
Your First Application

Mehdi Sadeqi

Contents

1 Adding a new application 2

2 Deltapy application configuration 4
2.1 Adding logging configuration . 5
2.2 Adding database configuration 6
2.3 Adding communication configuration 6
2.4 Adding request processor configuration 7

3 DeltaPy Application Architecture 7

1

1 Adding a new application

Writing a new application using Deltapy application server framework is really
easy. First create a python package for new application:

mkdir sample_application

touch sample_application/__init__.py

Each deltapy application has a settings package inside it, so first we should
add the basic needed configuration to application package. Read 2 section to
understand how to do that for the sample application.

In order to recognize the package as an application by Deltapy application
loader, we should add a class to init .py module in the main package that
inherits deltapy.application.Application class:

from de l tapy . a p p l i c a t i o n . base import Appl i ca t ion

class SampleAppl icat ion (Appl i ca t ion) :
’ ’ ’
Sample a p p l i c a t i o n f o r demonstrat ion .
’ ’ ’

The application is ready. Although, it has no commands and services, so
check the 3 to write a sample add command. To run the new application, in a
module or python interpreter enter:

>>> from sample_application import SampleApplication

>>> sample_app = SampleApplication()

>>> sample_app.run()

>> Initializing application[sample_application] ...

>>> sample_app.run()

>> Loading application[sample_application].

>> Disabled packages:

Package [deltapy.config] loaded.

Package [deltapy.logging] loaded.

Package [deltapy.database] loaded.

Package [deltapy.transaction] loaded.

Package [deltapy.commander] loaded.

Package [deltapy.event_system] loaded.

>> deltapy.event_system:[1] packages loaded.

>> Total loaded packages: 6

>> Disabled packages: 0

>> Disabled packages:

Package [deltapy.scheduling] loaded.

Package [deltapy.caching.database] loaded.

Package [deltapy.caching.file] loaded.

2

Package [deltapy.caching.remote] loaded.

Package [deltapy.caching] loaded.

Package [deltapy.unique_id.generators.uuid_generator] loaded.

Package [deltapy.unique_id.generators] loaded.

Package [deltapy.unique_id] loaded.

Package [deltapy.system] loaded.

Package [deltapy.security.database] loaded.

Package [deltapy.security.authentication] loaded.

Package [deltapy.security.session] loaded.

Package [deltapy.security.null] loaded.

Package [deltapy.security.authorization] loaded.

Package [deltapy.security] loaded.

Package [deltapy.request_processor.multiprocess] loaded.

Package [deltapy.request_processor.multithread] loaded.

Package [deltapy.request_processor.complex_multiprocess] loaded.

Package [deltapy.request_processor] loaded.

Package [deltapy.communication.xmlrpc] loaded.

Package [deltapy.communication.ice] loaded.

Package [deltapy.communication.pyro] loaded.

Package [deltapy.communication.pymp] loaded.

Package [deltapy.communication] loaded.

Package [deltapy.integeration] loaded.

Package [deltapy.batch] loaded.

Package [deltapy.scripting] loaded.

Package [deltapy.storm] loaded.

>> deltapy:[34] packages loaded.

>> Total loaded packages: 34

>> Disabled packages: 0

>> Disabled packages:

>> sample_application:[0] packages loaded.

>> Total loaded packages: 34

>> Disabled packages: 0

>> Application[sample_application] loaded.

>> Security services activated.

Congratulations! The application is up and running. Connect to it with any
of different protocol types you defined previously using DeltaConsole tool[see
it’s documentation]:

mehdi@FREEDOM:~$ deltaconsole -n 127.0.0.1 -p 19083 -t xmlrpc

or

mehdi@FREEDOM:~$ deltaconsole -n 127.0.0.1 -p 19082 -t pyro

3

or

mehdi@FREEDOM:~$ deltaconsole -n 127.0.0.1 -p 19081 -t ice

You will see your application console and you can run framework specific or your application commands at console:

mehdi@FREEDOM:~$ deltaconsole -n 127.0.0.1 -p 19081 -t ice -uroot

___ _ _ ___ _

/ ___| | |_ __ _ / __\ ___ _ __ ___ ___ | | ___

/ /\ / _ \ | __|/ _‘ | / / / _ \| ’_ \/ __|/ _ \| |/ _ \

/ /_// __/ | |_| (_| | / /___| (_) | | | __ \ (_) | | __/

/___,’ ___|_|__|__,_| ____/ ___/|_| |_|___/___/|_|___|

version : 3.1

Type ’help’ for more information

Password:

sample_application/>

Run the newlly added add command:

sample_application/> sample_app.add(2 + 3)

44

Command takes [0.0460250377655] seconds to execute.

sample_application/>

Read 3([how to add commands and services]) document, to learn how to add
more commands.

2 Deltapy application configuration (for sample
application)

Deltapy has its own configuration system. Most of Deltapy features use con-
figuration files. Each Deltapy application should have a settings folder in it’s
package with a few config files. So we should create the settings package in the
application folder:

mkdir sample_application/settings

touch sample_application/settings/__init__.py

Each Deltapy application should have the following configuration files in it’s
settings folder:

• app.config

• communication.config

• request processor.config

• logging.config

4

• database.config

So add above files to settings folder. There are some other config files that
are not mandatory when using version.

2.1 Adding logging configuration

An application can have any number of loggers introduces in logging configura-
tion file. Each logger can write it’s output to a seperate log file or to a common
log file. First we add the logging config file:

touch sample_application/settings/logging.config

Then we add the basic root logger to it:

[loggers]

keys=root

[handlers]

keys=console, root_file, root_syslog

[formatters]

keys=base

[logger_root]

level=DEBUG

handlers=root_file

[handler_root_file]

class=handlers.TimedRotatingFileHandler

formatter=base

args=(’/var/log/corebanking/root.log’,’D’ , 1, 7)

[handler_console]

class=StreamHandler

formatter=base

args=(sys.stdout,)

[formatter_base]

format=[%(levelname)s]-[%(process)d]-[%(asctime)s]-[%(name)s]: %(message)s

[handler_root_syslog]

class=handlers.SysLogHandler

formatter=base

args=((’localhost’, handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

You can add any number of loggers and handlers.

5

2.2 Adding database configuration

Like logging configuration, you can have any number of database sections in
database configuration file. First we create the file:

touch sample_application/settings/database.config

The we add the sections for our database. Currently supported databases
are: sqlite, mysql, postgresq l

[global]

default:local

[local]

connection:sqlite:./sample_app.db

min:0

max:0

growup:0

Again we can add any number of database sections, each for one database.
We should introduce default section to be used in [global] section.

min and max are the minimum and maximum number of connections to this
database that the application will keep in it’s connection pool. The growup is
the number of connections that will be added temporarily to connection pool
once needed.

2.3 Adding communication configuration

Deltapy supports multiple communication channles. You can define differet
protocols, IPs and ports to connect to the new appliction. Currenty XMLRPC,
Pyro and Ice are supported. To use each of these communication channles,
related modules should be installed on your system. Add the following code to
communication.config file:

[pyro]

type=pyro

host=0.0.0.0

port=19082

[ice]

type=ice

host=192.168.22.83

port=19081

[xmlrpc]

type=xmlrpc

host=0.0.0.0

port=19083

6

2.4 Adding request processor configuration

This configuration defines how the application will handle the requests, mul-
tithreaded or multiprocess or mix. The name defined in global section is the
default behaviour.

Add the following code to request process.config file:

[global]

default = multithread

[multithread]

max_threads = 64

[multiprocess]

max_processes = 8

[complex_multiprocess]

max_threades = 8

max_processes = 8

These are the very basic configuration needed to run a Deltapy application.

3 DeltaPy Application Architecture

Each Deltapy application should respect the following well defined application
architechture. There are four different and important layers [and also concepts]
that deltapy applications are built upon them: Package, Command, Service and
Component.

+ Application

+ Package [any number of packages are allowed]

+ Commands

- Command Modules

- __init__.py [Contains only functions]

+ Services

- Service Modules

- __init__.py [Contains only functinos]

+ Components

- Component Modules

- __init__.py [Contains SampleApplicationFirstComponent class]

- __init__.py [Contains SampleApplicationFirstPackage class]

- __init__.py [Contains SampleApplication class]

Each well designed Deltapy application should have it’s three different layer
in three different packages: command, service and component package. These
are encapsulated in Packages. So we add the first Package to application:

7

mkdir sample_application/first_package

touch sample_application/first_package/__init__.py

Each application can have any number of Packages in it. Package is a Deltapy
class that can contain command, service and component. For a python pack-
age to be recognized by Deltapy application loader as a Deltapy Package it
should inherit from Deltapy Package class in it’s init .py module [Contents
of sample_application/first_package/__init__.py module]:

from de l tapy . packaging . package import Package

This i s the s t r i n g which w i l l be used to r e g i s t e r the
f i r s t app component and a l s o to f i nd i t in runtime ,
and shou ld be unique .

SAMPLE APP FIRST COMPONENT ID =
’ sample app . f i r s t p a c k a g e ’

class SampleAppl icat ionFirstPackage (Package) :
’ ’ ’
A package i s a conta iner f o r commands , s e r v i c e and

component .
’ ’ ’

The Deltapy application loader will walk through the application tree to find
Packages and load their commands and components.

Commands are the external interface of each application that are being ex-
ecuted from any communication channel(using tools like DeltaConsole or any
other client which supports Deltapy communication channles). Actually, com-
mands are functions defined in a module that has been decorated with deltapy
command decorator, we will add a sample command soon. Each command ex-
poses a single atomic feature of your application. Deltapy application loader
will walk through all over your application packages to find command packages
and modules in it and exposing them to outside world. So we add the command
package and module:

mkdir sample_application/first_package/commands

touch sample_application/first_package/commands/__init__.py

Then we edit the sample_application/first_package/commands/__init__.py
module to add a new command:

from de l tapy . commander . de co ra to r s import command
import s amp l e app l i c a t i on . f i r s t p a c k a g e . s e r v i c e s as

f i r s t p a c k a g e s e r v i c e s

@command(’ sample app . f i r s t p a c k a g e . add ’)
def add (a , b) :

’ ’ ’

8

Returns a + b [No implementat ion here .]

@param a : i n t
@param b : i n t

@return : i n t
’ ’ ’
return f i r s t p a c k a g e s e r v i c e s . add (a , b)

Note the text within command decorator, it will be the name of the exposing
command, and the only name of it.

Remember that commands never have any implementation, the only call
the appropriate service and return the result. And, commands only are being
executed via communication channle and it is not possible to run a command
inside the application, we will use services to do it.

Service is the layer between commands and components[the real implemen-
tation]. In other words the services are the internal interface of a deltapy ap-
plication. Services are the standard way for a Deltapy application to expose
services to other parts of the application. Services are functions too, that are
defined within service package.

Services are not directly depended upon components, but they use the ap-
plication context to find the component dynamically and call it’s appropriate
method. Again, services never have any implemenation, they are only intented
to find and call the appropriate component method and then return it’s result.
We add the service package the same way as before:

mkdir sample_application/first_package/services

touch sample_application/first_package/services/__init__.py

Then we edit the sample_application/first_package/services/__init__.py
module to add a new service for previously added command:

from de l tapy . a p p l i c a t i o n . s e r v i c e s import get component
from s amp l e app l i c a t i on . f i r s t p a c k a g e import

SAMPLE APP FIRST COMPONENT ID

def add (a , b) :
’ ’ ’
Returns a + b

@param a : i n t
@param b : i n t

@return : i n t
’ ’ ’
return

get component (SAMPLE APP FIRST COMPONENT ID) . add (a ,
b)

9

Note the dynamic nature of a service and how the component is detached
from the service. This is a key feature which allows us to use different imple-
mentations without touching the service and command layers.

Components are the a bit different, they are not only consits of functions or
method. Each component is a class that is inherited from Deltapy Component
class. Component classes should be decorated with deltapy ‘register’ decorator.
When application is loading, the Deltapy application loader will walk through
out the application tree to find commands and components. First, we create
the components package:

mkdir sample_application/first_package/components

touch sample_application/first_package/components/__init__.py

and we add our class to it[content of sample_application/first_package/components/__init__.py
module]:

from de l tapy . a p p l i c a t i o n . deco ra to r s import r e g i s t e r
from de l tapy . core import DeltaObject

from s amp l e app l i c a t i on . f i r s t p a c k a g e import
SAMPLE APP FIRST COMPONENT ID

@ r e g i s t e r (SAMPLE APP FIRST COMPONENT ID)
class

SampleApplicationFirstPackageComponent (SampleAppl icat ionFirstPackageRealImplementat ion) :
’ ’ ’
Components are the r e a l implementaion you can a l s o

i n h e r i t them from another c l a s s f o r b e t t e r and
c l eaner code .

’ ’ ’

class
SampleAppl icat ionFirstPackageRealImplementat ion (DeltaObject) :
’ ’ ’
This c l a s s conta ins the implementaion .
’ ’ ’
def add (s e l f , a , b) :

’ ’ ’
Returns a + b

@param a : i n t
@param b : i n t

@return : i n t
’ ’ ’
return a + b

10

Note the ‘register’ decorater on top of component class. The Deltapy appli-
cation loader will add this component to it’s applications component collection.
The DeltaObject class is the base class for all classes in Deltapy framework. And
finally, see how we detached the real implementation from component itself.

Now our SampleApplicationFirstPackage is completed and the ‘add’ com-
mand is exposed and service is working. We can run the command after running
and connecting to SampleApplicatin instance.

11

